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Motivation @

« Incorporate CFD into all aspects of
turbomachinery design and analysis
— Incorporate optimization techniques
— Reduce design cycle time
o Characterize the unsteady and time-averaged
flow fields:

— Provide unsteady loads for
structural/thermal analyses

CORSAIR
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Corsair -1

e Corsair — 3D CFD code for analysis of
turbomachinery components

— 14 years of development
— Doug Sondak (Boston University) co-author

o Wildcat is the 2D version of Corsair
o Available free from NASA

% Corsair - 11

Time-dependent equations of motion

— Full Navier-Stokes, thin-layer Navier-Stokes or
Euler

_ Variable fluid properties (Cp, gamma) as a
function of P, T
Third-order spatial discretization of inviscid fluxes
— Roe
Second-order spatial discretization of viscous fluxes
— Standard central differences
Second-order temporal accuracy




_%_ Corsair - 111 @

e Multi-block O-H grid topology
— O-grids around airfoils and in tip clearance
regions
— H-grids for remainder of flow field and
nozzles
— Well-suited for parallel simulations
» Grid Motion
— Arbitrary translation/rotation
— Blade vibration

_%_ Corsair -1V @

e Turbulence models
— Highly-modified Baldwin-Lomax model
— Two-equation models (2D only)

e Transition models
— Abu-Ghannam and Shaw
— Mayle
— Roberts




Corsair - V
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« Boundary conditions
— Steady and unsteady inlet and exit
— Specified wall temperature or heat flux
— Film cooling/mass injection
— Symmetry, part-span shrouds
— Actuator disk
_ Component linking (cavities, etc.)
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Corsair - VI

o Parallel simulations
_ MPI used for coarse-grain decomposition
« decomposition by blade row or passage
« decomposition by O- and H-grids
o decomposition by component
« user specified decomposition

— OpenMP used for fine-grain
decomposition
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Corsair - VII

» Miscellaneous capabilities
— Internal error checking
— Conjugate heat transfer capability
— Provides unsteady pressure files for stress
analysis
— Comprehensive design page

— Will run on Unix, Linux or Windows NT
platforms
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Design and Analysis of
A Two-Stage Supersonic
Turbine
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Design Process @

Level 3
Design
Optimization

Level 2
CFD
Analysis

Level 1
1D Analysis
&
Design
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Two-Stage Supersonic Turbine

Baseline CFD Analysis

Ist Vape

1st Blade

tosngsavas| fa sestuns

2nd Blade Optimized CFD Analysis

Optimized Blade Rows

Current improvement in turbine efficiency is 11 points. This could
be traded for approximately 230° R in turbine inlet temperature or
~2.25 seconds of Isp, or a combination of the two.
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%_ Comparisons with Meanline @
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TPO Turbine 1st Stage Blades with inrumentation
Pockets Cut inlo the Surfaces

Transducer Locations

Wire Channele

TPO Turbine 1st Stage Blade Models -
Blades 1and 201 8

‘ ]

|
!

Flow in a Partial-Admission
Supersonic Turbine
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% Simplex Partial-Admission Turbine @
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«Simplex supersonic turbine—
~Straight centerline nozzles (6 nozzles/95 rotors)
*Full-Admission simulation
—1 nozzle and 8 rotors modeled, 1.3 million grid points
*Partial-Admission simulation
—6 nozzles and 95 rotors modeled, 7.1 million grid points
~1+ revolutions
*Flow conditions
-M,=0.25, Pt,=801 psia, Tt,=799 R, Pt,/P,=15
—Operating fluid is GOX in engine, N, in rig experiments
«Computational resources
—17-38 MPI processes on 450 MHz SGI 02000 processors
—1-3 OpenMP threads
-3x108 sec/grid pointiteration using 38 MPI process, 1 OpenMP thread

% Simplex Partial-Admission Turbine @
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% Instantaneous Mach Number
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%_ Unsteady Pressure Envelopes
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_%_ Unsteady Pressure Traces - Midspan

. |

il

T ey

i

N

|

90% Chord S.S.

Hall- Auglirac Usiirady Provmss Qum)
p .

12



Unsteady Integrated Forces @
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Flow in a Centrifugal
Pump Stage
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Grid for Centrifugal Stage
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Unsteady Pressure w/o Splitters

Static Pressare (psia)
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_%_ Unsteady Pressure w/ Splitters @

Dimensional Pressure in psia = Non-Dimensional Pressure x 105
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% Static Head Coefficient @
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SSME Flow Liner/Inducer
Simulations
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SSME LH2 Feed System

LH2 FEED SYSTEM
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SSME LH2 Feed System @
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LH2 Flow Liner Slots
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Feedline and BSTRA

Liner Details
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View from Upstream
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_%_ Feedline and BSTRA @
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_%_ Feedline and BSTRA e
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% Feedline and BSTRA @’
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% Feedline and Inducer @
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% Feedline and Inducer @
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% Inducer Simulation w/slots, cavity @
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é Inducer Simulation w/slots, cavity @
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% Upstream Edge of Downstream Cavity NASA
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Velocity magnitude (ft/sec)

% Inducer Simulation w/slots, cavity @/
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% Inducer Simulation w/slots, cavity @

Time-averaged (over 1 rev) velocity magnitude (ft/sec)
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%._ Inducer Simulation w/slots, cavity @

Time-averaged velocity magnitude (ft/sec)
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%_ Extent of Inducer Pressure Field @
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% Extent of Inducer Backflow @
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% Extent of Inducer Backflow @/

Extent of backflow
varies with inducer
design, but in most
cases extends one

or more duct diameters
upstream. The backflow
also generates pre-swirl
in the flow approaching
the inducer.

Extent 6f backflow
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Future Directions
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%_ Current Work and Future Plans @

* “All-speed” version of Corsair (Phantom)
— Reformulate equations without perfect gas assumption
— Primitive variable formulation

— Tabular fluid properties or compute based on equation of
state

— Sensors to switch between incompressible (pre-
conditioning) and compressible physics

— Dual time stepping to replace Newton iterations for time
accuracy

* Two-phase flows
* Cavitation modeling

— Necessary for accurate pump/inducer design and analysis
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